Semantic cut-elimination for two explicit modal logics
نویسنده
چکیده
Explicit modal logics contain modal-like terms that label formulas in a way that mimics deduction in the system. These logics have certain proof-theoretic advantages over the usual modal logics, perhaps the most important of which is conventional cut-elimination. The present paper studies tableau proof systems for two explicit modal logics, LP and S4LP. Using a certain method to prove the correctness of these systems, we obtain a semantic proof of cut-elimination for these logics.
منابع مشابه
Cut elimination in coalgebraic logics
We give two generic proofs for cut elimination in propositional modal logics, interpreted over coalgebras. We first investigate semantic coherence conditions between the axiomatisation of a particular logic and its coalgebraic semantics that guarantee that the cut-rule is admissible in the ensuing sequent calculus. We then independently isolate a purely syntactic property of the set of modal ru...
متن کاملGeneric Modal Cut Elimination Applied to Conditional Logics
We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional lo...
متن کاملCut Elimination for Shallow Modal Logics
Motivated by the fact that nearly all conditional logics are axiomatised by so-called shallow axioms (axioms with modal nesting depth ≤ 1) we investigate sequent calculi and cut elimination for modal logics of this type. We first provide a generic translation of shallow axioms to (one-sided, unlabelled) sequent rules. The resulting system is complete if we admit pseudo-analytic cut, i.e. cuts o...
متن کاملA proof-theoretic semantic analysis of dynamic epistemic logic
The present paper provides an analysis of the existing proof systems for dynamic epistemic logic from the viewpoint of proof-theoretic semantics. Dynamic epistemic logic is one of the best known members of a family of logical systems which have been successfully applied to diverse scientific disciplines, but the proof theoretic treatment of which presents many difficulties. After an illustratio...
متن کاملA Systematic Proof Theory for Several Modal Logics
The family of normal propositional modal logic systems are given a highly systematic organisation by their model theory. This model theory is generally given using Kripkean frame semantics, and it is systematic in the sense that for the most important systems we have a clean, exact correspondence between their constitutive axioms as they are usually given in a Hilbert style and conditions on th...
متن کامل